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Abstract

Effects of Pauli paramagnetism on type-II superconductivity are examined
through a derivation of a Ginzburg—Landau (GL) functional by including
the field-induced pair-breaking effects through the spin and orbital on an
equal footing. On the basis of the resultant GL functional we discuss the
corresponding high-field vortex phase diagram at the level of mean field
approximation. Special attention is paid to the mutuality of characteristic
temperatures, i.e., the temperatures: (1) at which the vortex state is described
in terms of higher Landau levels; (2) at which a vortex state modulated
along the field direction (a Fulde—Ferrell-Larkin—Ovchinnikov-like state)
becomes stable; and (3) at which a superconducting transition becomes nearly
discontinuous.

1. Introduction

Since sample inhomogeneity can easily weaken the characteristic effects of paramagnetic
depairing on type-II superconductivity, a very clean sample which simultaneously possesses
a high orbital limiting field is needed to study such effects. The recently discovered heavy-
fermion superconductor CeColns [1], because of its high purity, high transition temperature,
and strong renormalization of the Fermi velocity, provides a realistic situation where we must
consider a vortex state with a strong paramagnetic depairing. In fact the shape of the H,,-line
and nearly discontinuous behaviours at H,, seen in transport and thermodynamic quantities [2]
imply the existence of a strong paramagnetic effect. A reliable theoretical tool for explaining the
above phenomena is Ginzburg—Landau (GL) theory. Conventionally a microscopic derivation
of a GL functional has always been performed under the assumption that we can treat the
effect of orbital depairing perturbatively [4, 5]. Unfortunately this assumption breaks down
in the region of interest because a behaviour peculiar to the paramagnetic depairing emerges
under the condition [ 2 7 'S T where I = WoB is the Zeeman energy, tg = rg/vp, and
rg = «/Po/27 B is the magnetic length. We also have to take impurity scattering into account
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Figure 1. Diagrams representing the impurity vertex correction.

since, as one can see below, even a weak impurity is relevant to the discussion of a phase
diagram for real materials.

In this paper we report the result of a microscopic calculation of a GL functional which,
together with weak impurity scattering, includes the effects of orbital and of paramagnetic
depairing on an equal footing. Our aim here is to evaluate each term of the following GL

functional:
- b c
F= N(O)/ {Zza,v(qf)mgjwz + Z<§|A,<°>|4 + g|A,<°)|6)}, (1
TL q: N [

where A(N) = NIa 1e/r2 Z A(N )ele:s! denotes the pair field (superconducting order parameter)
in the N th Landau level ‘N (O) is the density of states at the Fermi surface. Some comments
are needed on the form of the GL functional. Firstly, having CeColns in mind we assume a
quasi-two-dimensional system. Secondly, we restrict the fourth- and sixth-order terms to the
lowest Landau level (LLL), because in a realistic situation a wider region described by the LLL
pair field does exist. Finally, we approximate the fourth and sixth couplings in equation (1) as
local ones, although the correct forms of these couplings are non-local. Details of the validity

of this approximation and a more complete treatment will be given in a future publication [8].

2. Quadratic term

Assuming a quasi-two-dimensional BCS Hamiltonian and treating the effect of the magnetic
field quasi-classically, the coefficient aN(qZZ) in equation (1) has the following form:

an(g?) =In(T/Te) = 27T Y (Dn(e) — 1/e), )
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0 27p 21p 2
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Here J and s are the interlayer hopping and spacing, £y and Jy are the Nth-order Laguerre
and Bessel functions respectively. Throughout this paper we assume that a magnetic field is
always applied perpendicular to the conducting plane. In order to take account of impurity
scattering, we have to include the finite lifetime 7 of quasi-particles as well as the impurity
vertex correction shown in figure 1. This procedure corresponds to replacing Dy (¢) in a N(qzz)
by Dy(e+T1')/(1 = T'Dy(e +T)) where I = 1/27.

Figure 2 shows an H,-line determined by the condition ay(0) = 0 for a moderately
strong paramagnetic depairing 1.0 H3"'(0)/27 T,o = 0.85 where H%*'(0) = 0.089¢/&3 is
a two-dimensional orbital limiting field. In a low-temperature region, as was first pointed
out by Buzdin [3], H.»(T) corresponding to the next Landau level (NLL) exceeds the one
corresponding to the LLL at some temperature T.x. From the figure one can see that this
temperature is easily suppressed by a weak impurity scattering (figure 2(b)). Incidentally,
under the same conditions, there exists another temperature below which a modulated vortex
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Figure 2. The H.-lines corresponding to LLL and NLL. For the definition of the temperatures
Thext> TrrLO, and T, see the text.
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Figure 3. Diagrams contributing to the quartic term in equation (1).

state (a Fulde—Ferrell-Larkin—Ovchinnikov-like (FFLO-like) state) becomes stable. We can
examine this temperature by calculating the lowest gradient term along a field, and this
temperature TrpLo 1s also plotted in figure 2. In the parameter regions studied, we find that
both temperatures are always located close to each other.

3. Higher-order term

Next we evaluate the quartic term in equation (1). As Mineev [4] demonstrated, this term can
be positive or negative, and in the case of a negative quartic term, resultant phase transition
becomes nearly discontinuous. However, it is quite important to note that a negative quartic
term does not in itself lead to a true first-order phase transition at H,, immediately. This
point was explained in [6, 8]. Three diagrams shown in figure 3 contribute to the quartic
term. Because the high-energy part in the Matsubara summation gives a lower contribution,
we can neglect the impurity vertex correction represented in figure 1 for the clean limit. The
expression for the coefficient b = b, + by, is given by

b, :271T/li[dpif<23:
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where the complex numbers ¢, & with unit length denote the position on the Fermi surface,
and the functions f and I, are defined by

f(p) = exp(—p/7) cos(21p)/sinh (27 Tp), (6)
Li(p1p203p41C8) = exp(—{|p* + 3[(p1& — p36)* + (028 — pa€)*?]

4
+ (01 + p3E) (g + pa)*}/4Tp), where |5> =) p;. @

i=1
Through a numerical calculation we work out a temperature 7* below which the coefficient
b becomes negative, and the temperature is also plotted in figure 2. The result shows that this
temperature is always higher than the previous two temperatures. Finally, the stability of the
GL functional is inspected, i.e., the coefficient ¢ in equation (1) always has a positive sign in

the region where b is negative.

4. Summary

In summary we have studied a GL functional microscopically and found that

(1) Thext and Tggro are located close to each other;
(ii) T is higher than Tjex or TrpLo; and
(iii) the sixth-order term in equation (1) is positive in the region of negative quartic terms.

These facts mean that a nearly discontinuous behaviour at H., seen for CeColns can be
discussed on the basis of a GL functional, used in [6, 8], with a negative quartic term and
a positive sixth-order term within the LLL subspace. The theoretical argument in [6, 8] is
based on the fact that the correct phase diagram for a vortex state must be discussed including
fluctuation effects [7] even in a less fluctuating system and even in the case with a strong
paramagnetic effect, because in a vortex state a characteristic dimensional reduction due to
Landau quantization is always effective. Therefore the theoretically correct interpretation of
the above phenomena is that the nearly discontinuous behaviour is just a (quite steep) crossover
and this crossover has sometimes been misunderstood as a true first-order phase transition.

At this stage it is not clear whether Tix¢ and TrpLo for CeColns are of experimentally
accessible order. The theoretical description of a vortex state in such a region is left to future
studies.
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